
10 Pitfalls on The Path to Osquery Bliss
Zach Wasserman — Osquery/Fleet Consultant, Dactiv LLC

QueryCon 2019

Pitfall #1
User context is important when executing queries

User context is important
when executing queries

• As user: 
SELECT * FROM firefox_addons;

• As root:  
SELECT * FROM firefox_addons;

User context is important
when executing queries

• Osquery sometimes uses the user context in which it
is running to retrieve results.

• Solution: JOIN with the users table.  
SELECT * FROM users  
JOIN firefox_addons USING (uid);

Pitfall #2
Order of JOINed tables can be significant

Order of JOINed tables can
be significant

• As root:  
SELECT * FROM firefox_addons  
JOIN users USING (uid);

Order of JOINed tables can
be significant

• The order in which the tables are generated can effect the
constraints the generation function receives.

• Solution: Order the JOINs so that tables that require constraints
are generated after. 
SELECT * FROM users  
JOIN firefox_addons USING (uid);

• Note: Sometimes the SQLite optimizer will reorder the tables
anyway. To be sure the tables are JOINed in the order provided,
use CROSS JOIN. 
SELECT * FROM users  
CROSS JOIN firefox_addons USING (uid) 
WHERE identifier LIKE '%mozilla%';

Pitfall #3
Dude, where’s my SHA1?

Reading large files and the --read_max flag

Reading large files and the
--read_max flag

• SELECT * FROM hash  
WHERE path = '/Users/zwass/suspicious';

Reading large files and the
--read_max flag

• Tables that try to read files over the --read_max size
(default 50MB) can return empty results.

• This can effect most tables and osquery functions that
involve reading files, not just the hash table!

• Solution: Tune the --read_max flag if you need results
from large files.

Pitfall #4
JSON Escaping and Query Packs

JSON Escaping and Query
Packs

• Let's copy a query from the windows-attacks query
pack:

...

 "CCleaner_Trojan.Floxif": {

 "query" : "select * from registry where path like
'HKEY_LOCAL_MACHINE\\SOFTWARE\\Piriform\
\Agomo%';",

...

JSON Escaping and Query
Packs

• JSON backslashes are escaped as '\\', while osqueryi
expects backslashes to use the literal '\'.

• Solution: Be careful to use the appropriate escaping
and modify for the format when translating between
osqueryi and JSON query packs.

• Note: The fleetctl format uses yaml and therefore does
not require any escaping in backslashes. This means
that queries can be directly copy/pasted to osqueryi.

Pitfall #5
CLI Flags vs. Configuration Options

CLI Flags vs. Configuration
Options

• Let's try setting the extensions_socket configuration in
our config file:

{ 
 "options": { 
 "extensions_socket": "/tmp/osquery_ext.sock" 
 } 
}

CLI Flags vs. Configuration
Options

• Some options must be specified as CLI flags (and
can't be modified after osquery startup), while others
are configurable in a loaded configuration.

• osqueryd --help will tell us which flags are CLI-only

• Solution: Identify flags that are CLI-only and specify
those in explicit flags or a flagfile.

Pitfall #6
Understanding schedule intervals

Understanding schedule
intervals

• Schedule a query.

• Put the computer to sleep.

• When does the query run?

Understanding schedule
intervals

• The osquery scheduler runs on ticks (while the process
is active), not wall time.

• Solution: Account for time the machine is off or
suspended when creating query intervals.

Pitfall #7
Events in osqueryd and osqueryi

Events in osqueryd and
osqueryi

• Run osqueryd and see that events are collected.

• Run osqueryi and query for the events.  
Where are they?

Events in osqueryd and
osqueryi

• An ephemeral database is used with osqueryi by
default.

• Solution: Provide the --database_path flag to osqueryi
to open the RocksDB database used by osqueryd.

• Note: Only one osquery process can open a database
at a time. Terminate osqueryd before connecting
osqueryi to the database.

Pitfall #8
Tuning event expiration flags

Tuning event expiration flags

• Run osquery with a low events_max:

{ 
 "options": { 
 "disable_events": false, 
 "events_max": 4 
 } 
}

Tuning event expiration flags

• The flags --events_max and --events_expiration
prevent the events buffers from growing indefinitely.

• Solution: Ensure that the flags are tuned appropriately
for the query intervals and volumes of data being
generated by event publishers.

Pitfall #9
Event publisher status

• osqueryd is running with events enabled

• How can we understand why events are not coming
through publishers?

Event publisher status

Event publisher status

• The osquery_events tables provides status information
about event publishers and subscribers

• Solution: Look at the active, events, and subscriptions
columns of the osquery_events table for the relevant
publishers. 
SELECT * FROM osquery_events;

Pitfall #10
Identifying expensive queries

Identifying expensive queries

• With osqueryd running a schedule

• How can we identify which queries are utilizing the
most resources?

Identifying expensive queries

• The osquery_schedule table exposes metadata about
the scheduled queries and their resource
consumption.

• Solution: Look for outliers in the osquery_schedule
table 
SELECT * FROM osquery_schedule  
ORDER BY user_time + system_time DESC

• Note: The osquery repository also has performance
tooling at /tools/analysis/profile.py.

Zach Wasserman
github.com/zwass

Osquery Slack: @zwass
Twitter: @thezachw

zach@dactiv.llc

mailto:zach@dactiv.llc

