10 Pitfalls on The Path to Osquery Bliss

Zach Wasserman — Osquery/Fleet Consultant, Dactiv LLC
QueryCon 2019



Pitfall #1

User context is important when executing queries



User context is important
when executing queries

e AS user:

SELECT * FROM firefox_addons;

e As root:

SELECT * FROM firefox_addons;



User context is important
when executing queries

 Osquery sometimes uses the user context in which it
IS running to retrieve results.

o Solution: JOIN with the users table.

SELECT * FROM users
JOIN firefox_addons USING (uid);






Pitfall #2

Order of JOINed tables can be significant



Order of JOINed tables can
be significant

e As root:
SELECT * FROM firefox addons
JOIN users USING (uid);



Order of JOINed tables can
be significant

 The order in which the tables are generated can effect the
constraints the generation function receives.

 Solution: Order the JOINs so that tables that require constraints
are generated after.
SELECT * FROM users
JOIN firefox_addons USING (uid);

 Note: Sometimes the SQLite optimizer will reorder the tables
anyway. To be sure the tables are JOINed in the order provided,
use CROSS JOIN.
SELECT * FROM users
CROSS JOIN firefox_addons USING (uid)
WHERE identifier LIKE '%mozilla®%";






Pitfall #3

Dude, where’s my SHA1?
Reading large files and the --read_max flag



Reading large files and the
--read_max flag

« SELECT * FROM hash
WHERE path = "/Users/zwass/suspicious;



Reading large files and the
--read_max flag

e Tables that try to read files over the --read_max size
(default 50MB) can return empty results.

* This can effect most tables and osquery functions that
iInvolve reading files, not just the hash table!

 Solution: Tune the --read_max flag if you need results
from large files.






Pitfall #4

JSON Escaping and Query Packs



JSON Escaping and Query
Packs

 Let's copy a query from the windows-attacks query
pack:

"CCleaner_Trojan.Floxif™: {

'"query" : "select * from registry where path like
'HKEY_LOCAL_MACHINE\\SOFTWARE\\Piriform\
\Agomo%';",




JSON Escaping and Query
Packs

 JSON backslashes are escaped as "\\', while osqueryi
expects backslashes to use the literal '\'.

 Solution: Be careful to use the appropriate escaping
and modify for the format when translating between
osqueryi and JSON query packs.

 Note: The fleetctl format uses yaml and therefore does
not require any escaping in backslashes. This means
that queries can be directly copy/pasted to osqueryi.






o ot BN
T

-~ S W S
P SRR P UENL

Pitfall #5

CLI Flags vs. Configuration Options




CLI Flags vs. Configuration
Options

 Let's try setting the extensions_socket configuration in
our config file:

{
"options": {
"extensions_socket": "/tmp/osquery_ext.sock”
}
}



CLI Flags vs. Configuration
Options

 Some options must be specified as CLI flags (and
can't be modified after osquery startup), while others
are configurable in a loaded configuration.

e osqueryd --help will tell us which flags are CLI-only

 Solution: Identify flags that are CLI-only and specify
those In explicit flags or a flagfile.






Pitfall #6

Understanding schedule intervals



Understanding schedule
Intervals

* Schedule a query.
 Put the computer to sleep.

 When does the query run?



Understanding schedule
Intervals

 The osquery scheduler runs on ticks (while the process
Is active), not wall time.

« Solution: Account for time the machine is off or
suspended when creating query intervals.






Pitfall #7

Events in osqueryd and osqueryi



Events in osqueryd and
osqueryi

 Run osqueryd and see that events are collected.

 Run osqueryi and query for the events.
Where are they?



Events in osqueryd and
osqueryi

 An ephemeral database is used with osqueryi by
default.

 Solution: Provide the --database_path flag to osqueryi
to open the RocksDB database used by osqueryd.

 Note: Only one osquery process can open a database
at a time. Terminate osqueryd before connecting
osqueryi to the database.






A

£roe

s iy,

't'..t;,
M oy,
!

TN

o
-

Pitfall #8

Tuning event expiration flags



Tuning event expiration flags

 Run osquery with a low events_max:

{
"options": {
"disable_events": false,
"events_max": 4

)
]



Tuning event expiration flags

 The flags --events_max and --events_expiration
prevent the events buffers from growing indefinitely.

 Solution: Ensure that the flags are tuned appropriately

for the query intervals and volumes of data being
generated by event publishers.






Pitfall #9

Event publisher status



Event publisher status

e osqueryd is running with events enabled

* How can we understand why events are not coming
through publishers?



Event publisher status

 The osquery_events tables provides status information
about event publishers and subscribers

 Solution: Look at the active, events, and subscriptions

columns of the osquery_events table for the relevant
publishers.

SELECT * FROM osquery_events;






Pitfall #10

Identifying expensive queries



Identifying expensive queries

 With osqueryd running a schedule

* How can we identify which queries are utilizing the
most resources?



Identifying expensive queries

 The osquery_schedule table exposes metadata about
the scheduled queries and their resource
consumption.

 Solution: Look for outliers in the osquery_schedule
table
SELECT * FROM osquery_schedule
ORDER BY user_time + system_time DESC

 Note: The osquery repository also has performance
tooling at /tools/analysis/profile.py.






Zach Wasserman
github.com/zwass
Osquery Slack: @zwass
Twitter: @thezachw
zach@dactiv.llc



mailto:zach@dactiv.llc

